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1 Orbit-Stabilizer and Symmetric Groups

1.1 The orbit-stabilizer theorem

Theorem 1.1. Let X be a G-set. For each x, there is a bijection ψx : G/Gx → G ·x given
by gGx 7→ g · x for g ∈ G.

Proof. Exercise.

Corollary 1.1.
[G : Gx] = |G · x|.

Proposition 1.1 (class equation). Let T be the set of representatives of conjugacy classes
in G. If G is finite,

|G| =
∑
x∈T

[G : Zx] = |Z(G)|+
∑

x∈G\Z(G)

[G : Zx|.

Proof. G acts on itself by conjugation, and the stabilizer of x ∈ G is Zx. The orbit of x is
Cx, the conjugacy class of x. Then

|G| =
∑
x∈T
|Cx| =

∑
x∈T

[G : Zx].

1.2 Action of symmetric groups

Let σ ∈ Sn. An element σ acts on Xn = {1, . . . , n}.

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
.

Definition 1.1. A k-cycle (k ≤ n) is the permutation

(
a1 a2 · · · ak

)
(i) =


aj+1 i = aj , i ≤ j ≤ k − 1

a1 i = ak

i otherwise.
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Every permutation is a product of disjoint cycles, which commute.

Example 1.1.

σ =

(
1 2 3 4 5 6
2 3 6 5 4 1

)
=
(
1 2 3 6

) (
4 5

)
Definition 1.2. A transposition is a 2-cycle.

Proposition 1.2. Every cycle can be written as a product of transpositions.

Proof. Prove the following relationship by induction on n:(
a1 a2 · · · ak

)
=
(
a1 a2

) (
a2 a3

)
· · ·
(
an−1 an−2

)
.

How does conjugation work?

σ
(
a1 a2 · · · ak

)
σ−1 =

(
σ(a1) σ(a2) · · · σ(ak)

)
.

Example 1.2. What is the centralizer of
(
1 2 3

)
∈ S5? This is

〈(
1 2 3

)
,
(
4 5

)〉
.

Theorem 1.2. If σ = τ1 · · · τr = ρ1 · · · ρs for transpositions τi and ρi, then r ≡ s (mod 2).

Proof. Let Sn � Z[x1, . . . , xn] by σ · f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)). Let

p(x1, . . . , xn) =
∏

1≤i<j≤n
(xi − xj).

Then τ · p =
∏

1≤i<j≤n(xτ(i) − xτ(j)). If τ =
(
k `

)
with k < `, then xτ(i)xτ(j) occurs with

the sign in the product unless i = k, j ≤ ` or i ≥ k, j = `. So τ · p = (−1)2(`−k)−1p = −p.
In general, σ·p = sgn(σ)p, where sgn : Sn → {±1} is a homomorphism, and sgn(τ) = −1

for any transposition τ . So sgn(σ) = (−1)r = (−1)s, so r ≡ s (mod 2).

1.3 Alternating groups

In the above proof, we defined the sign of a permutation, which is ±1.

Definition 1.3. A permutation is even/odd if its sign is 1/− 1.

Example 1.3. What is the sign of a cycle? sgn
(
1 · · · k

)
= (−1)k+1

Definition 1.4. The alternating group is An = ker(sgn) = {σ ∈ Sn : σ is even} E Sn.

Note that |An| = n!/2 for n ≥ 2.

Definition 1.5. A group is simple if it has no proper, nontrivial normal subgroups (and
is nontrivial).
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Example 1.4. A4 is not simple. {
(
a b

) (
c d

)
: {a, b, c, d} = {1, 2, 3, 4}} ∪ {e} E A4

Theorem 1.3. A5 is simple.

Proof. An element in A5 must be e, a three cycle, a product of two two-cycles, or a five
cycle. The centralizer of

(
1 2 3

)
in A5 =

〈(
1 2 3

)
,
(
4 5

)〉
∩ A5 =

〈(
1 2 3

)〉
. So

C(1 2 3), the set of 3-cycles, has size 20. Similarly number of products of two 2-cycles is 15,
and the number of five cycles is 12.

The conjugacy classes have order 1, 12, 12, 15, and 20. Every normal subgroup N is
a union of conjugacy classes (including {e}) and has order dividing |An| = 60. The only
way is to take N = A5 or N = e.

Remark 1.1. An action G � X can be thought of as a homomorphism ρ : G → SX .
Then ker(ρ) =

⋂
x∈X Gx is trivial if and only if the aciton is faithful. G acting on G by

left multiplication gives us that ρ : G→ SG is injective. This is Cayley’s theorem.
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